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Mathematical Modelling and Transient Analytical Solution 
of a Glucose Sensitive Composite Membrane for Closed-Loop 

Insulin Delivery Using He’s Variational Iteration Method 
 
 

R. Angel Joy, L. Rajendran 

 
 
Abstract – A mathematical modelling of an enzymatic reaction and diffusion of reactants and 
product inside glucose sensitive composite membrane is discussed. The model is based on time-
and position-dependent diffusivity of species and involves the system of non-linear reaction 
diffusion equations. He’s variational iteration method is used to obtain approximate and 
analytical solutions of the system. A comparison of the analytical approximation and numerical 
simulation is also presented. Copyright © 2012 Praise Worthy Prize S.r.l. - All rights reserved. 
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Nomenclature 

gC  Concentration of glucose (mol/cm3) 

OXC  Concentration of oxygen (mol/cm3) 

aC  Concentration of gluconic acid (mol/cm3) 

gD  Diffusion coefficient of glucose (cm2 /s) 

OXD  Diffusion coefficient of oxygen (cm2 /s) 

aD  Diffusion coefficient of gluconic acid (cm2 
/s) 

gK  Michaelis-Menten constant for glucose 
(mol/cm3) 

OXK  Michaelis-Menten constant for glucose 
oxidase(mol/cm3) 

maxv  Maximal reaction rate (mol s-1 cm-3) 
x  Distance (mm) 
t Time (s) 

*
gC  Concentration of glucose in the external 

solution(mol/cm3) 
*
OXC  Concentration of glucose in the oxygen 

solution(mol/cm3) 
l  Half thickness of the membrane (mm) 
u  Dimensionless concentration of glucose  

(none) 
v  Dimensionless concentration of oxygen 

(none) 
w  Dimensionless concentration of gluconic 

acid (none) 
X  Dimensionless distance (none) 
τ  Dimensionless time (none) 

1 1 
  

E S, ,
,

γ γ
α β

 
Dimensionless reaction diffusion parameters 
(none) 

,η µ  Ratio of diffusion coefficients (none) 

I. Introduction 
Nearly 5% of the present world’s population is 

suffering by the common, serious disease diabetes [1].  
The diabetes which is called Insulin dependent 

diabetes mellitus(IDDM) requires treatment with insulin 
delivered by injection several times a day or by a pump 
to control glucose levels. Hence researches are going on 
the various types of insulin delivery systems containing a 
glucose sensitive membrane for the past three decades.  

Some of these delivery systems contains immobilized 
glucose oxidase and catalase in a pH response polymeric 
hydrogen[2]-[7]. In this system an increase in the 
external glucose concentration brings more gluconic acid 
as a product of glucose oxidation. This causes changes in 
the hydrogen swelling and hence the insulin permeability 

The pH-sensitive hydrogels may be classified as 
cationic or anionic according to the nature of the charges 
present in the network. Cationic hydrogels, consisting of 
amino groups, swells as pH decreases at higher glucose 
levels, while anionic hydrogels shrink due to 
protonization of acidic groups. The external stimuli such 
as pH changes can alter the structure and physical 
properties of ionic hydrogels. Hence these can be used 
for stimulus responsive drug delivery. The extensive use 
of homogeneous hydrogels is limited because of its weak 
mechanical polymers are developed to overcome this 
problem. Thus the composite materials provide a well-
controlled and efficient drug release and have good 
mechanical properties. 

The percolation theory [8],[9] describes the transport 
through composite materials. Here the release of drug is 
governed either by diffusion or swelling kinetics. 

Though there is a lot of experimental investigation on 
glucose sensitive membranes, only a few studies 
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consider their mathematical model. In this work a 
mathematical model, based on the above description was 
developed to describe a dynamic process of diffusion of 
reactants and product couples with an enzymatic reaction 
inside a glucose sensitive composite membrane 
containing anionic nano particles glucose oxidase and 
catalase embedded in a hydrophobic polymer. 

The Mathematical modelling of the glucose sensitive 
composite membrane for closed loop insulin delivery 
results in a system of nonlinear partial differential 
equation of second order. 

The solution of non-linear equations can be obtained 
using Homotopy Perturbation method[10], Adomin 
decomposition method [11]-[13], parameter expansion 
method [14]-[16] and variational iteration method (VIM) 
etc. The VIM was first proposed by He[17] and was 
successfully applied to the systems obtained from 
various fields. In this method the solution procedure is 
by means of variational theory. The purpose of this work 
is to derive concentration profile for glucose, oxygen and 
gluconic acid. A comparison of the analytical 
approximation and numerical simulation is also 
presented for small values of time. 

II. Mathematical Formulation                      
of the Problem 

This model involves an enzymatic reaction and 
diffusion of reactants and product inside a glucose 
sensitive composite membrane. 

The membrane is structured as a porous media where 
the pores are filled with a weakly acidic gel and water. 
Here the pH inside the membrane influences the swelling 
of the anionic gel and hence accelerate solute 
permeability. This exhibits the pH profile as a function 
of internal concentration of gluconic acid. 

The concentration of glucose, the permeability of the 
reactants and products, and the rate of enzymatic reaction 
determine the internal concentration of gluconic acid. 

This mathematical model describes the enzymatic 
reaction, kinetics of diffusion, temporal and spatial 
distribution of the reactants and products, and resultant 
membrane porosity and permeability. The glucose 
sensitive enzymatic reaction is expressed as: 

 

Glucose + 
1
2

O2         (1) 
Gluconic acid+ H2O 

 
The increase in glucose concentration increases the 

extent of accumulation of gluconic acid and the degree of 
shrinkage in particle depends on this. Applying the 
conservation law of mass and Fick’s second law of 
diffusion, the equation for diffusion and reaction is: 

 

 

i i
i i

C C
D R

t x x
υ

∂ ∂∂ ⎛ ⎞= +⎜ ⎟∂ ∂ ∂⎝ ⎠
 (2) 

where i represents individual species, e.g. i=g for 
glucose, i=ox for oxygen, and i=a for gluconic acid; the 
stoichiometric coefficient, iυ , are: gυ =-1 1 2ox /υ = −  

and 1aυ = ; C is the concentration function of time and 
position, D is the diffusion coefficient in the membrane 
and x is the length parameter, and R is the overall 
reaction rate that can be written in the following form 
[18]-[20]: 

 ( )
υ

=
+ +

max g ox

ox g g g ox

C C
R

C K C C K
 (3) 

 
where Kg and Kox are respectively the Michaelis-Menton 
constants for glucose and glucose oxidase, and maxυ  is 
the maximal reaction velocity that is proportional to the 
concentration of enzyme(Cenz) in the membrane. 
Assuming that the membrane is immersed in a well-
stirred external medium of large volume with a constant 
concentration of each species, the initial and boundary 
conditions are: 
 

 

( )

( )

( )

0 
1

1

1  
1

*
g g

*
OX OX

*
OX

a

xcosh
lt , C C

cosh

xcosh
lC C

cosh

C xC cosh
cosh l

⎛ ⎞
⎜ ⎟
⎝ ⎠= =

⎛ ⎞
⎜ ⎟
⎝ ⎠=

⎡ ⎤⎛ ⎞= − ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 (4) 

 

 

0,  0 0 0g OX aC C C
x = ;    ;   

x x x
∂ ∂ ∂

= = =
∂ ∂ ∂

 (5) 

 

 
        0* *

g g OX OX ax l , C C ; C C ; C= = = =  (6) 
 
where l is half thickness of the membrane, x=0 is the 

centre of the membrane, and OX
*C and g

*C are the 

concentrations of oxygen and glucose in the external 
solution, respectively. 

We introduce the following set of dimensionless 
variables: 

 

g
*
g

C
u ;

C
= OX

*
OX

C
v

C
= ;  a

*
OX

C
w

C
= ;  xX

l
=  

2 2

1 12    τ γ γ= = =g max max
E S* *

g g g OX

D t l v l v
; ;

l D C D C
         (7) 

           
* *
g OX OX a

g OX g g

C C D D
; ; ;

K K D D
α β η µ= = = =  

 
By using these variables, Eq. (2) for i=g, ox, a can be 

cast into the following dimensionless form: 
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12

12 E
u u v uuv uv

X
γ

τ α β

−
⎡ ⎤∂ ∂

= − + +⎢ ⎥∂ ∂ ⎣ ⎦
 (8) 

 

 

12
1

2 2
S uvv v v uuv

X
γ

η
τ α β

−
⎡ ⎤∂ ∂

= − + +⎢ ⎥∂ ∂ ⎣ ⎦
 (9) 

 

 

 12

12 S
w w v uuv uv

X
µ γ

τ α β

−
⎡ ⎤∂ ∂

= + + +⎢ ⎥∂ ∂ ⎣ ⎦
 (10) 

 
Here u, v and w are the dimensionless concentration of  

glucose, oxygen and gluconic acid, and 1 1E S,γ γ  are 

the corresponding Thiele modulus. and  α β  are the 
dimensionless rate constant. 

The corresponding initial and boundary conditions (4) 
- (6) become: 

 

( )
( )
( )
( )

( )
( )

1

1

 1
1

=

=

= −

cosh X
u

cosh

cosh X
v

cosh

cosh X
w

cosh
     

when t = 0 (11) 

 

 
0    0      0     when  0u v w; ; X

X X X
∂ ∂ ∂

= = = =
∂ ∂ ∂

 (12) 

 
 

1   1     0    when 1 u ; v ; w X= = = =  (13) 
 

In order to solve the boundary value problem (8)-(13) 
we have used the He’s Variational iteration method [17], 
[21]. The basic principle of this method and detailed 
derivations of the dimensionless concentrations u, v and 
w of glucose, oxygen and gluconic acid are described in 
Appendix A. As a result, we have obtained: 
 

     

( )
( )
( ) ( )

( )

11 1    
1

1

τ

γ αβ
τ

αβ α β

=

⎡ ⎤⎛ ⎞= + −⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟+ +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

E

u X ,

cosh X
cosh Xcosh
cosh

 (14a) 

 
( )

( )
( ) ( )

( )

11  
1

2
1

τ

γ αβ
η τ

αβ α β

=

⎡ ⎤⎛ ⎞= + −⎢ ⎥⎜ ⎟⎛ ⎞⎢ ⎥⎜ ⎟+ +⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

S

v X ,

cosh X
cosh cosh X

cosh

 (14b) 

 
( )

( )
( ) ( )

( )

1

1

1
1

1

τ

γ αβ
µ τ

αβ α β

= +

⎡ ⎤⎛ ⎞− + −⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟+ +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

S

w X ,

cosh X
cosh Xcosh
cosh

   

(14c) 

III. Numerical Simulation 

The non-linear differential Eqs (8)-(10) with the 
boundary conditions (12) and (13) are solved by 
numerical methods. The function pdex4 in SCILAB 
software [22] which is a function of solving the 
boundary value problem for differential equation is used 
to solve this equation. 

Its numerical solution is compared with variational 
iteration method in Figs. 1-5 and it gives satisfactory 
results for short time. The SCILAB program is also 
given in Appendix B. 

IV. Results and Discussion 

Eqs. (14a)-(14c) represent the analytical 
expressionsfor the dimensionless concentration of 
glucose ( )u X ,τ , oxygen ( )v X ,τ and gluconic 

acid ( )w X ,τ  valid for short time and all values of  
parameters 1 S1, , ,   and E ,γ γ α β η µ  considered in this 
study. The Thiele modulus 1 1 and E Sγ γ   can be varied by 
changing either the thickness of the membrane or the 
concentration of oxygen and glucose in the external 
solution. This parameter describes the relative 
importance of diffusion and reaction in the enzyme layer.  

When it is small, the kinetics are the dominant 
resistance; the overall uptake of glucose, oxygen and 
gluconic acid in the enzyme matrix is kinetically 
controlled. Under these conditions, the glucose 
concentration profile across the membrane is essentially 
uniform. The overall kinetics are determined by the 
maximal reaction rate. In contrast, when the Thiele 
modulus is large, diffusion limitations are the principal 
determining factor. 

Figs. 1-3 present the dimensionless concentration of 
glucose ( )u X ,τ  for some fixed values of parameters.   
From the figures, it is evident that the value of the 
concentration of glucose increases when thickness of the 
membrane increases. Also the value of ( )u X ,τ  is 
maximum at 1X = . The value of the dimensionless 
concentration of oxygen ( )v X ,τ versus the 
dimensionless distance for the fixed value of 
dimensionless time 0 1.τ =  is plotted in figure 4. From 
this figure, it is inferred that the value of the 
concentration of oxygen increases when thickness of the 
membrane increases. 

Fig. 5 presents the concentration of gluconic acid 
( )w X ,τ  as a function of X and 0 3.τ = . From this 

figure, it is obvious that the value of the concentration of 
gluconic acid ( )w X ,τ  decreases with increasing X, 
approaching zero at 1X = . The normalized 
concentration of glucose, oxygen and gluconic acid is 
compared with numerical values for short time in the 
Tables I-III. 
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TABLE I 
COMPARISON OF NORMALIZED ANALYTICAL CONCENTRATION OF GLUCOSE U WITH NUMERICAL RESULTS FOR VARIOUS 
VALUES OF  & X τ  AND FOR SOME FIXED VALUES OF PARAMETER 1 1  0 1 0 01 100   0 01  0 1E S. , . , , . , .α β γ γ η= = = = =  

Concentration of glucose u 
X u (when 01.0=τ ) u (when 0.1τ = ) u (when 3.0=τ ) u (when 5.0=τ ) 

 analytica
l numerical % 

error 
analytica

l numerical % 
error 

analytica
l numerical % 

error 
analytica

l numerical %error 

0 0.6487 0.6481 0.06 0.6543 0.6524 0.19 0.6668 0.6531 1.37 0.6792 0.6641 1.51 
0.2 0.6617 0.6611 0.06 0.6674 0.6655 0.19 0.6802 0.661 1.41 0.6929 0.6766 1.63 
0.4 0.7013 0.7006 0.07 0.7074 0.7050 0.24 0.7209 0.7055 1.54 0.7345 0.7146 1.99 
0.6 0.7690 0.7682 0.08 0.7757 0.7724 0.33 0.7907 0.7727 1.80 0.8056 0.7795 2.61 
0.8 0.8676 0.8667 0.09 0.8752 0.8698 0.54 0.8922 0.8699 2.23 0.9092 0.8736 3.56 
1 1.0010 1.0000 0.10 1.0099 1.0000 0.99 1.0297 1.0000 2.97 1.0495 1.0000 4.95 

 
TABLE II 

COMPARISON OF NORMALIZED ANALYTICAL CONCENTRATION OF OXYGEN v  WITH NUMERICAL RESULTS FOR VARIOUS VALUES 
OF  & X τ  AND FOR SOME FIXED VALUES OF 1 10 1 0 01 100   0 01   0 1α β γ γ η= = = = =E S. , . , , . , .  

Concentration of oxygen v  
X v  (when 0 01.τ = ) v  (when 0 1.τ = ) v  (when 0 3.τ = ) v  (when 0 5.τ = ) 

 analytica
l numerical % 

error 
analytica

l numerical % 
error 

analytica
l numerical % 

error 
analytica

l numerical %error 

0 0.6487 0.6481 0.06 0.6545 0.6546 0.01 0.6675 0.6679 0.04 0.6804 0.6806 0.02 
0.2 0.6617 0.6611 0.06 0.6677 0.6677 0.00 0.6809 0.6812 0.03 0.6941 0.6941 0.00 
0.4 0.7013 0.7006 0.07 0.7076 0.7077 0.01 0.7216 0.7217 0.01 0.7356 0.7347 0.09 
0.6 0.7690 0.7682 0.08 0.7759 0.7758 0.01 0.7913 0.7901 0.12 0.8066 0.8022 0.44 
0.8 0.8676 0.8667 0.09 0.8754 0.8742 0.12 0.8927 0.8854 0.73 0.9100 0.8936 1.64 
1 1.0010 1.0000 0.10 1.0100 1.0000 1.00 1.0300 1.0000 3.00 1.0500 1.0000 5.00 

 
TABLE III 

COMPARISON OF NORMALIZED ANALYTICAL CONCENTRATION OF GLUCONIC ACID  w  WITH NUMERICAL RESULTS FOR VARIOUS VALUES  
OF  & X τ  AND FOR SOME FIXED VALUES OF 1 10 1 0 01 100   0 01   0 1α β γ γ µ= = = = =E S. , . , , . , .  

Concentration of gluconic acid w  
X w  (when 0 01.τ = ) w  (when 0 1.τ = ) w  (when 0 3.τ = ) w  (when 0 5.τ = ) 

 analytica
l numerical % 

error 
analytica

l numerical % 
error 

analytica
l numerical % 

error 
analytica

l numerical %error 

0 0.3513 0.3519 0.06 0.3455 0.3461 0.06 0.3325 0.3328 0.03 0.3196 0.3194 0.02 
0.2 0.3383 0.3389 0.06 0.3323 0.3329 0.06 0.3191 0.3195 0.04 0.3059 0.3059 0.00 
0.4 0.2987 0.2994 0.07 0.2924 0.2931 0.07 0.2784 0.8790 0.06 0.2644 0.2653 0.09 
0.6 0.2310 0.2318 0.08 0.2241 0.2249 0.08 0.2087 0.2105 0.18 0.1934 0.1978 0.44 
0.8 0.1324 0.1333 0.09 0.1246 0.1265 0.19 0.1073 0.1150 0.77 0.0900 0.1065 1.65 
1 -0.0010 0.0000 0.10 -0.0100 0.0000 1.00 -0.0300 0.0000 3.00 -0.0500 0.0000 5.00 

 

 
 

Fig. 1. Dimensionless concentration of glucose vs. dimensionless 
distance X calculated for 10 1 0 01   100E. , . ,α β γ= = =  and 0 01.τ = . 
Solid line represents the analytical solution presented in this work (Eq. 

(14a)) and the dotted line the numerical solution 

 
 

Fig. 2. Dimensionless concentration of glucose vs. dimensionless 
distance X calculated for 0 1 0 01. , . ,α β= = 1 100Eγ =  and 0 1. .τ =  

Solid line represents the analytical solution presented in this work (Eq. 
(14a)) and the dotted line the numerical solution 
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From the tables it is inferred that, the concentrations 
of glucose and oxygen increases when time increases 
whereas that of gluconic acid decreases when time 
increases. 

 

 
 

 
Fig. 3. Dimensionless concentration of glucose vs. dimensionless 

distance X calculated for  0 1 0 01. , . ,α β= =  1 100Eγ =  and 0 3. .τ =  
Solid line represents the analytical solution presented in this work (Eq. 

(14a)) and the dotted line the numerical solution 
 

 
 

 
Fig. 4. Dimensionless concentration of oxygen vs. dimensionless 

distance X calculated for 10 1 0 01  0 01S. , . , . ,α β γ= = =  0.1η =  and 

0 1.τ =  Solid line represents the analytical solution presented in this 
work (Eq. (14b)) and the dotted line the numerical solution 

 

 
 

Fig. 5. Dimensionless concentration of gluconic acid vs. dimensionless 
distance X calculated for 0 1  0 01. , . ,α β= =  1 0 01S . ,γ =  0.1η =  and 

0 3.τ =  Solid line represent the analytical solution presented in this 
work (Eq. (14c) and the dotted line the numerical solution 

V. Conclusion 

We have analysed the theoretical ancient model 
describing the process of reaction and diffusion in 

glucose-responsive composite membranes, previously 
described in [2]. 

The system of non-linear, non steady state reaction-
diffusion equations of the model has been solved 
analytically. The accuracy of the approximate analytical 
solutions has been verified by comparison with 
numerical solutions. The analytical results obtained can 
be employed to analyze effects of membrane formulation 
such as enzyme loading, the type of buffer in the external 
solution and for the optimization of the design of glucose 
sensitive membranes. 
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Appendix A 
The variational iteration method of solving non-linear 
differential equation[21]. 

 
Here we can solve the system of non-linear equations 

(8)-(13) analytically using variational iteration method 
[21] in the following way. Let us consider the following 
system: 

 

 

( ) ( ) ( ) ( )L u x,t  R u x,t  N u x,t   g x,t+ + =⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦  (1-A) 
 

where L ,
t
∂

=
∂

 R is a linear operator  which has partial 

derivatives with respect to x, N [u(x,t)]  is a non-linear 
term and  g( x, t) is an inhomogeneous term. According 
to the variational iteration method, we can construct the 
following iteration formula: 
 

 

( ) ( )

( ) ( )

( ) ( )

1

0
x,

ξ ξ
λ

ξ

+ = +

⎡ ⎤
⎢ ⎥+ +
⎢ ⎥+
⎢ ⎥
⎢ ⎥+ −⎣ ⎦

∫

n n

~
t

n n
~

n

u x,t   u x,t  

Lu x, R u x,
  dξ

N u x,  g ξ

 (2-A) 

 
where λ is called a general Lagrange multiplier which an 

be identified optimally via variational theory, 
~

nR u  and 

n

~
N u  are considered as restricted variation. 



 
R. Angel Joy, L. Rajendran 

Copyright © 2012 Praise Worthy Prize S.r.l. - All rights reserved                                         International Review of Chemical Engineering, Vol. 4, N. 5 
Special Section on Open Door Initiative (ODI) – 3rd edition 

521 

In this method a trial function (an initial solution) is 
choosen which satisfies given boundary conditions. 

Using above variational iteration method we can write 
the correct functional of (8)-(10) as follows: 

 

 

( ) ( )
( ) ( )

1

2

2

1
0 1

ξ ξ

                ξ 
τ

τ τ

ξ
λ

γ αβ
αβ β α

+ = +

⎡ ⎤∂ ∂
− +⎢ ⎥

∂ ∂⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥+

+ +⎢ ⎥⎣ ⎦

∫

n n

n n

~

E n n

n n n n

u X , u X ,

u X , u X ,
X

d
u v

u v v u

(3-A) 

 

      

( ) ( )
( ) ( )

( )

1

2

2

2
0 1

ξ ξ
ξ

             ξ   

2

τ

τ τ

η

λ
γ αβ

αβ β α

+ = +

⎡ ⎤∂ ∂
− +⎢ ⎥

∂ ∂⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥+

+ +⎢ ⎥⎣ ⎦

∫

n n

n n

~

S n n

n n n n

v X , v X ,

v X , v X ,
X

d
u v

u v v u

 (4-A) 

 

     

( ) ( )
( ) ( )

( )

1

2

2

3
0 1

ξ ξ
ξ

             ξ   
τ

τ τ

λ
γ αβ

αβ β α

+ = +

⎡ ⎤∂ ∂
−µ +⎢ ⎥

∂ ∂⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥+

+ +⎢ ⎥⎣ ⎦

∫

n n

n n

~

S n n

n n n n

w X , w X ,

w X , w X ,
X

d
u v

u v v u

 (5-A) 

 
where 1 2 3,   and  λ λ λ  are Lagrange multipliers. Here it is 
to be mentioned that for linear problems, using 
variational iteration method, its exact solution can be 
obtained by only one iteration. 

But for non-linear problems, its accurate solution can 
be obtained by two or three iterations. 

Considering the variation with respect to un , vn  and 
wn, we have: 
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1

2

2

1
0 1
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δ τ δ τ
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⎢ ⎥
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~
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u X , u X ,
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d
u v

u v v u

 (6-A) 

 
 

 

( ) ( )
( ) ( )

( )

1

2

2

2
0 1

 

         

2

τ

δ τ δ τ

ξ ξ
η

ξ
δ λ ξ

γ αβ
αβ β α

+ = +

⎡ ⎤∂ ∂
− +⎢ ⎥

∂ ∂⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥+

+ +⎢ ⎥⎣ ⎦

∫

n n

n n

~

S n n

n n n n

v X , v X ,

v X , v X ,
X

d
u v

u v v u

 (7-A) 

    

( ) ( )
( ) ( )

( )

1

2

2

3
0 1

 

       +  

n n

n n

~

S n n

n n n n

w X , w X ,

w X , w X ,
X

d
u v

u v v u

τ

δ τ δ τ

ξ ξ
η

ξ
δ λ ξ

γ αβ
αβ β α

+ = +

⎡ ⎤∂ ∂
− +⎢ ⎥

∂ ∂⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

+ +⎢ ⎥⎣ ⎦

∫
 (8-A) 

 

Here 
2 2 2

2 2 2 ,    ,   
~

n n n
n n

u v w
u v ,

X X X
∂ ∂ ∂

∂ ∂ ∂
 are considered as 

restricted variations. Under this consideration the 
stationary conditions of the above correction functional 
((6-A), (7-A), (8-A)) can be expressed as follows: 
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From the above equations, the Lagrange multipliers 

can be identified as: 
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Using (12-A) and taking n=0 in the iteration formula 
((3-A)-(5-A)) we have: 
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We now consider the initial approximate solution 

satisfying ((12),(13)) as: 



 
R. Angel Joy, L. Rajendran 

Copyright © 2012 Praise Worthy Prize S.r.l. - All rights reserved                                         International Review of Chemical Engineering, Vol. 4, N. 5 
Special Section on Open Door Initiative (ODI) – 3rd edition 

522 

 

( )
( )

( )
( )

( )
( )

  
1 1

1
1

= =

= −

cosh X cosh X
u ; v

cosh cosh

cosh X
w

cosh

 (16-A) 

 
By the iteration formula ((13-A)-(15-A)) we obtain 

the equations (14) in the text. 

 

Appendix B 
A SCILAB/MATLAB program [22] for the numerical 

solution of the system of non linear second order 
differential Eqs. (8)-(10) for the glucose composite 
membrane is given below: 

 
function pdex4 
m = 0; 
x = [0,0.2,0.4,0.6,0.8,1]; 
t=[0.01,0.1,0.3,0.5]; 
sol = pdepe(m,@pdex4pde,@pdex4ic,@pdex4bc,x,t); 
u1 = sol(:,:,1); 
u2 = sol(:,:,2); 
u3 = sol(:,:,3); 
figure 
surf(x,t,u1) 
title('u1(x,t)') 
xlabel('Distance x') 
ylabel('time t') 
zlabel('u1(x,2)') 
figure 
surf(x,t,u2) 
title('u2(x,t)') 
xlabel('Distance x') 
ylabel('time t') 
zlabel('u2(x,2)') 
figure 
surf(x,t,u3) 
title('u3(x,t)') 
xlabel('Distance x') 
ylabel('time t') 
zlabel('u3(x,2)') 
function [c,f,s] = pdex4pde(x,t,u,DuDx) 
c = [1; 1 ;1]; 
eta=0.1; 
mue=0.1; 
f = [1; eta; mue] .* DuDx;  
alpha=0.1; 
beta=0.01;  
y = (u(1)* u(2))/(u(1) * u(2)+(u(2)/alpha)+(u(1)/beta)); 
gamma=100;  
gamma1=0.01; 
F =(-gamma*y); 
F2 =(gamma1*y); 
F1 =(-(1/2)*gamma1*y); 
s=[F;F1;F2]; 
function u0 = pdex4ic(x) 

u0 = [(cosh(x)/cosh(1));(cosh(x)/cosh(1));1-
(cosh(x)/cosh(1))];  
function[pl,ql,pr,qr]=pdex4bc(xl,u1,xr,ur,t)  
pl = [0; 0 ;0];  
ql = [1; 1 ;1];  
pr = [ur(1)-1; ur(2)-1;ur(3)];  
qr = [0; 0;0];  
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