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Approximate Solution of Fractional Diffusion Equation – Revisited 
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Abstract – The article presents the approximate analytical solution of a fractional diffusion 
equation with the help of powerful mathematical tool viz., variational iteration method. Fractional 
diffusion equation has special importance in engineering and science, and constitutes a good 
model for many systems in various fields. By using initial value, the explicit solution of the 
equation has been derived, which accelerate the rapid convergence of the series solution. The 
striking features of the article are successful presentation of sub-diffusion characteristics of the 
probability density function through numerical computation due to the presence of reaction term 
for various fractional Brownian motions and for different specified values of the considered 
parameters. Copyright © 2012 Praise Worthy Prize S.r.l. - All rights reserved. 
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I. Introduction 
Nowadays fractional differential equations (FDEs) 

have been focused due to their frequent appearances in 
various applications in fluid mechanics, viscoelasticity, 
biology, physics, electrical network, control theory of 
dynamical systems, chemical physics, optics and signal 
processing, which can be successfully modelled by linear 
and non-linear fractional order differential equations. 
The important reason of gaining attention towards the 
research in the area of fractional calculus is due to the 
fact that fractional order system response ultimately 
converges to the integer order system response. Oldham 
and Spanier [1] have played the key role for the 
development of the subject. Several fundamental works 
solving fractional differential equations had been done 
by Miller and Rose [2], Podlubny [3], Diethelm and Ford 
[4], Diethelm [5], etc.  

Recently, application has been included to solve 
various classes of nonlinear fractional differential 
equations numerically. It is often seen that random 
fractal structures exhibit many anomalous features due to 
spatial complexities of the substrate which imposes 
geometrical constraints. These constraints may also be 
seen as temporal correlations existing on all time scales.  

In case of diffusion, for instance, these correlations 
lead to an anomalous behaviour where the mean-square 
displacement of a Brownian particle for time fractional 
derivative is ( )2 2X x t tα= > ≈ , where 0 1α< <  is the 

anomalous diffusion exponent. 
Variational iteration method (VIM) is one of the 

powerful methods by which a large variety of linear and 
nonlinear problems are solved with approximations 
converging rapidly to the exact and appropriate 
analytical solutions. 

The variational iteration method was first proposed by 
Chinese Mathematician J. H. He ([6]–[10]) and was 
successfully applied to solve nonlinear systems of PDE’s 
and nonlinear differential equations of fractional order 
by Shawagfeh [11], Diethelm and Ford [12], Momani 
and Odibat [13], etc. 

Diffusion equations are extensively studied by the 
researchers across the world due to their tremendous 
applications in science and engineering. But when 
equations involve the nonlinear terms and also fractional 
order derivatives, the study takes different dimension and 
becomes very much challenging to the researchers. 

Recently, the anomalous behaviors of the nonlinear 
fractional order diffusion equation in the form of sub- 
and super-diffusion due to the presence of different type 
of reaction term have been shown in the article of Das et 
al. [14]. 

In another recent article of Das et al. [15], the 
approximate analytical solutions of fractional order 
nonlinear diffusion equation in the presence of an 
absorbent term and a linear external force have been 
studied using another powerful mathematical tool like 
Homotopy Perturbation Method. 

In general it is very difficult to get even an 
approximate solution of a fractional order nonlinear 
equation. 

In this article the author has made a sincere endeavor 
to get the approximate solution of the following 
fractional diffusion equation in presence of reaction 
term: 
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with: 
 

 ( )0 ku x, x=  (2) 
 

where ( ) ( )
1

0 0ta t a , a ,
β

β
β

−

= > >
Γ

, is the time 

dependent absorbent term. 
The salient feature of the article is to solve the 

equation (1) under the complicated initial condition (2). 
To the best of author’s knowledge, the equation (1) has 
not yet been studied by any researcher under the 
complicated initial condition ( )0 ku x, x= . 

Effects of damping due to the presence of reaction 
term in order to get sub-diffusion of the nonlinear system 
are elegantly studied through numerical computation for 
different values of the parameters of physical interest and 
are presented graphically. 

II. Solution of the Problem 
The Eq (1) can be re-written as: 

 

 

( ) ( ) ( )
1

1
0

t
nu x,t uu a t u x, d

t x xt

α

α ξ ξ ξ
−

−

⎡ ⎤∂ ∂ ∂ ∂⎛ ⎞= − −⎢ ⎥⎜ ⎟∂ ∂ ∂∂ ⎝ ⎠⎢ ⎥⎣ ⎦
∫ (3) 

 
According to the VIM, the correction functional in t  - 

direction can be written as: 
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The function nu  is a restricted variation, which means 
0nuδ = . 

The successive approximation ( )1nu x,t+ , 0n ≥  of the 

solution ( )u x ,t  will be readily obtained upon using 
Lagrangian multiplier, and by using any selective 
function 0u . The initial value ( )0u x ,  is usually used 
for selecting the zero-th approximation 0u . To find the 
optimal value of ( )λ ξ , we have: 
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This yields the stationary conditions: 
 

 ( ) ( )0 and 1 0'λ ξ λ ξ= + =  (4c) 
 

Thus: 
 

 ( ) 1λ ξ = −  (5) 
 

Substituting the value of λ  in equation (4a), we get: 
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Beginning with the initial approximation 
( ) ( )0 0 ku x,t u x, x= =  the successive approximations are 

obtained as:
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Finally the exact solution is obtained as: 

 

( ) ( )n
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The above series solutions generally converge very 

rapidly. 
 

III. Numerical Results and Discussion 
In this section, numerical results of the probability 

density function ( )u x,t for different fractional Brownian 
motions (FBMs) are calculated for different values of the 
parameters at 1 1x .=  and these results are depicted 
through Figs. 1-4.  
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Fig. 1. Plot ( , ) vsu x t t  for 
540, 0.95, 0.25, 2, 3, 1.1a n k xα β= = = = = =  
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Fig. 2. Plot ( ) vsu x,t t  for 
395 0 95 0 1 2 3 1 1a , . , . ,n ,k , x .α β= = = = = =  
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Fig. 3. Plot ( ) vsu x,t t  for 
450 0 5 0 1 3 2 39 1 1a , . , . ,n ,k . , x .α β= = = = = =  
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Fig. 4. Plot ( ) vsu x,t t  for 
392 0 6 0 1 2 3 15 1 1a , . , . ,n ,k . , x .α β= = = = = =  
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During the computation only fourth order term of 
variational iteration solution is used in evaluating the 
approximate solution of the problem. It is evident that by 
using more terms, the accuracies of the results can be 
improved. 

The graphs clearly demonstrate that for various FBM 
( 0 5 0 6 0 95. , . , .α = ), there are possibilities of obtaining 
sub-diffusion with the help of parameters like βa ,k , . 

It is seen from the figures that sub-diffusions occur 
even for the cubic order of the nonlinearity and cubic 
power of x  in the initial condition. But beyond that, i.e., 
if the order of the nonlinearity and k  increases, the 
system becomes very much unstable. It is not possible to 
obtain sub-diffusion even adjusting the values of other 
parameters. 

IV. Conclusion 
The article has succeeded to accomplish three 

important objectives. First one is the study of nonlinear 
fractional diffusion equation. The second one is the study 
of damping through numerical computation for different 
fractional Brownian motions due to the effect of reaction 
term. Third one is the successful implementation of the 
powerful mathematical tool VIM which provides a 
simple way to achieve the approximate solution of highly 
nonlinear fractional diffusion equation for the given 
complicated initial condition. 
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