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An Exercise with the He’s Variation Iteration Method 
to a Fractional Bernoulli Equation Arising in Transient Conduction 

with Non-Linear Heat Flux at the Boundary 
 
 

Jordan Hristov 
 
 
Abstract – Surface temperature evolution of a body subjected to a nonlinear heat flux involving 
counteracting convection heating and radiation cooling has been solved by the variations 
iteration method (VIM) of He. The surface temperature equations comes as a combination of the 
time-fractional (half-time) subdiffusion model of the heat conduction and the boundary condition 
relating the temperature field gradient at the surface through the Riemann-Liouville fractional 
integral. The result of this equation is a Bernoulli-type ordinary fractional equation with a non-
linear term of 4th order. Two approaches in the identification of the general Lagrange multiplier 
and a consequent application of VIM have been applied. The common method replaces the 
fractional integral (in the Riemann-Liouville sense) by an integer order integral. The more exact 
method of Wu uses an initial Laplace transform of the fractional integral in the iteration formula 
to find correctly the Lagrange multiplier. Both approaches yield different Lagrange multipliers 
which results in different numerical results.The article discusses the origin of these differences in 
the light of correct application of VIM. The developed approximate solutions have been used in 
numerical simulation showing the effect of Biot number and the radiation-conduction number on 
the surface temperature evolution. Copyright © 2012 Praise Worthy Prize S.r.l. - All rights 
reserved. 
 
Keywords: Variational Iteration Method, Bernoulli-Like Fractional Equation, Lagrange 

Multiplier, Surface Temperature Evolution 
 
 

Nomenclature 
a  Thermal diffusivity, 2m s  
b  Sample (slab) thickness, m  
h  Heat transfer coefficient, 2W m K  
k  Thermal conductivity, W mK  

( )sq t′′  Surface flux density, 2W m  
t  Time, s  

2*t b a=  Time scale (heat diffusion), s  

aT  Ambient temperature, K  

refT  Reference temperature, K  

sT  Surface temperature, K  
T∞  Initial temperature of the body, K  
x  Space co- ordinate, m  
( )y t  Casual function 

  
Dimensionless Numbers 
Bi bh k=  Biot number 

* 2Fo t t ta b= =  Fourier number 
3

aN b T kσε=  Radiation conduction number 

Greek Letters 
α Fractional order, dimensionless 
ε Emissivity of cooled surface, 

dimensionless 
( )λ τ  General Lagrange multiplier 

Hλ  Lagrange multiplier defined by the 
method of He (see also the articles 
of S. Momani et al.) 

Wλ  Lagrange multiplier defined by the 
method of G. C. Wu [24], [25] 
(see Eq.(13c)) 

σ Stefan Boltzmann constant 
( )Γ •  Gamma function 

s aT Tθ =  Dimensionless temperature 

( )sθ  Laplace transform of the 
dimensionless temperature θ  

x bξ =  Dimensionless space co-ordinate 
τ Dummy variable in the fractional 

integrals and derivatives 
  
Subscripts 
n Number of iteration 
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Superscripts 
C  Cooling 
H  Heating 
R  Radiative 

I. Introduction 
The heat transfer problems are among those with 

intensive applications of new analytical and numerical 
methods for solving new emerging practical situations.  

The present article addresses two principle issues. 
First of all, a problem of surface heating of body 
subjected to a non-linear heat flux compromising a 
convective heating and a counteracting radiation cooling 
is formulated. The problem formulation uses half-time 
fractional model (in the Riemann-Liouville sense) to 
create an ordinary fractional differential equation 
(OFDE). 

This allows elimination of cumbersome solutions of 
the temperature file in the depth of the thermally treated 
body. Second, the fractional model of surface 
temperature evolution is of Bernoulli type OFDE which 
is solved by the variational iteration method (VIM) of 
He. The main problem is the correct identification of the 
general Lagrange multiplier. All these problems are 
consequently developed in the article. 

I.1. Non-Linear Boundary Condition due to 
Convection and Thermal Radiation 

The transient heating of flat surfaces is a common 
thermal  problem  solved  by  many  methods and  under 
various boundary conditions. 

It is impossible to encompass all of them, relevant 
especially to the flash heating of bodies used in the 
chemical, metallurgical and mineral industries. We stress 
the attention to 1-D transient heat conduction with a 
nonlinear boundary condition in the form: 
 

 ( ) ( )4

0
ref ref

C Rs
s s

x

T
k h T T T T

x
σε

=

∂
− = − ± −

∂
 (1a) 

 
In (1a) the reference temperature is [1],[2] is defined 

in accordance with the direction of heat fluxes 
towards/from the interface, namely: 
for cooling: 

ref

C
aT T=  and  

ref

R
aT T=                     (1b) 

 
for heating: 

ref

H
aT T=  and 

ref

R
RT T=                      (1c) 

 
In the light of application of the He’s VIM (see refs 

[3]-[8]) to solve nonlinear conduction equations this 
boundary condition has been recently used for solving 
convective–radiative cooling of lumped system (fin 
conduction problem) [9],[10]; as an independent 

equation with zero initial condition. Now, we stress the 
attention on a fractional-time equation arising in transient 
heating of bodies where (1a) is related to the time-
evolution of surface temperature and the solution is 
developed without the temperature field in the depth of 
the body. 

II. Problem Formulation and Model 
The flash heating of powder for example is a 

technique widely applied for de-hydroxylation of 
kaolinite. This mineral ( 2 3 2 2Al O 2SiO 2H Oi i ) undergoes 
an endothermic reduction (loss) of the amount of the 
hydroxyl water at about 600 C°  resulting in meta-kaolin.  

This final form is strongly dependent on the rate of 
heating during the flash process. The kaolinite particles 
are in the micro-size range but form aggregates that get 
forms of flakes which to some extent can be accepted as 
plates when the thermal treatment process has to be 
modelled. In accordance with the model of Davies [11] 
the kaolinite aggregates are assumed as plates of 
thickness b  heated by convection passing rapidly 
through a furnace and cooled be thermal radiation. It is 
well-known that such models have no analytical 
solutions due to the non-linearity of the boundary 
conditions at the interface. 

The process of flash heating of plate relevant to 
thermal treatment of kaolinite has been modelled by 
Davies [11] and solved approximately by the heat-
balance integral method of Goodman [12].   

The same method has been applied to radiation 
cooling of finite solids [13] and plates by convention-
radiation [14]. The heat balance integral solution allows 
the surface temperature to be estimated by developing an 
approximated temperature profile in the depth of body, 
then  defining the temperature gradient required to solve 
(1a) with respect to sT . The main drawback of this 
solution is that the temperature gradient at the interface 
depends on the choice of the approximate profile [12] 
and its calibration [15],[16]. 

The present work considers the transient heat 
conduction in a plate of thickness b  which is heated by 
convection and cooled by thermal radiation. This is, in 
fact, the problem considered by Davies [11], namely 

 

 
2

2 0
p

T T ka , a , x b
t Cx ρ

∂ ∂
= = ≤ ≤

∂ ∂
 (2a) 

 
with: 

 0 atT x b
x

∂
= =

∂
 (2b) 

 
and: 
 

 ( ) ( )4 4

0
at 0s

s a s a
x

T
k h T T T T x

x
σε

=

∂
− = − − − =

∂
 (2c) 
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The problem of interest is the time evolution of the 
surface temperature sT  which to some extent could be 
accepted with an initial condition ( )0 0sT t = =  for 
simplicity of the solution. It can be solved by either 
approximate analytical methods as those mentioned 
above or numerically. However, with all these methods 
the main errors come from the approximate 
determination of the space derivative ( ) 0xT x =∂ ∂ [12], 

[15],[16]. In order to find an effective solution of the 
problem where only the surface temperature sT  is of 
interest (it is the upper limit to which the body should be 
heated; determined by technological conditions, for 
example) we refer to the possibility to split (2a) into a 
fractional (half-time) heat conduction equation, namely: 

 

 
( ) ( )

1
2

1
2

T x,t T x,t
a

x
t

∂ ∂
= −

∂
∂

 (3a) 

 
with a fractional half-time derivative in the Riemann-
Liouville sense: 
 

 
( )

( )
( )1 2

1 2
0 1 2

0

1
1 2

t
RL

t
T x,t T x,udD du

dtt t u+

∂
= =

Γ∂ −∫  (3b) 

 
The surface flux and the temperature at the interface 

are interrelated by (3a) setting 0x = : 
 

 ( ) ( )1 2

1 2

0
0s

T ,t Tkq ,t
t tα π

∞
⎡ ⎤∂

′′ = −⎢ ⎥
∂⎢ ⎥⎣ ⎦

 (4a) 

 
with ( )0 sxT T= =  

 

 ( )
( )1 2

1 2

0
0 sq ,t

T ,t T
k t
α −

∞−

′′∂ ⎡ ⎤⎣ ⎦= +
∂

 (4b) 

 
with: 

( )
0

s
x

Tk q t
x =

∂ ′′− =
∂

 

 
T∞  in (4a),(4b) is the initial temperature of the body. 

Therefore, expressing the surface flux by (4a) and the 
boundary condition (2c) we get: 
 

 ( ) ( )
1 2

4 4
1 2

s
s a s a

T Tk h T T T T
t t

σε
α π

∞⎡ ⎤∂
− − = − − −⎢ ⎥

∂⎢ ⎥⎣ ⎦
(5a) 

 
at 0x = . 

In accordance with the assumption that ( )0 0sT t = =  
we may suggest 0T∞ =  in (4a),(4b) that simplifies the 

problem at issue.  
 Note: In order to be correct, a variable u T T∞= −  

transforms the initial condition of Eq. (2a) to zero 
one, which simplifies the problem with application 
of the RL derivative. Similar problem, with only 
radiative cooling, i.e., ( ) 4

0s sxq T x Tµ∂ == −∂ ∂ =  

and the variable u T T∞= −  through the relationship 

(4b) yields ( ) ( )1 2 4
s sT T D Tτ µ τ∗ − ∗

∞= − , where τ ∗  

is dimensionless time. The variable u T T∞= −  
means only a shift of the origin of the co-ordinate 
systems, that is equivalent to the assumption that 

0T∞ =  at 0t = : 
 

 ( ) ( )
1 2

4 4
1 2

s
s a s a

Tk h T T T T
t

σε
α
∂

− = − − −
∂

 (5b) 

 
Equation (5a) is expressed in a dimensional form but 

after non-dimensialization of the basic model (2a,b,c) 
with s aT Tθ = , x bξ =  and *Fo t t= ( 2*t b a= ), we 
get: 

 

 
2

2 0 1,
Fo
θ θ ξ

ξ
∂ ∂

= ≤ ≤
∂ ∂

 (6a) 

 
with: 

 0 at 1x bθ ξ
ξ
∂

= = =
∂

 (6b) 

 
and: 

 ( ) ( )4

0
1 1 at 0s

s s
x

Bi N x
θ

θ θ
ξ =

∂
− = − − − =
∂

 (6c) 

 

 Biot NumberbhBi
k

= −  (7a) 

 

 
3

Radiation-conduction numberab T
N

k
σε

= −  (7b) 

 
Now, using the relationship (4a) in a dimensionless 

form we get: 
 

 ( ) ( ) ( )
1 42

0 01 1 0RL
s s s sFo FoD Bi N ,θ θ θ θ == − − − =  (8a) 

 
After rearranging the RHS of (8a) we get a fractional 

(half –time) Bernoulli equation, namely: 
 

 
1 42

0
RL

s s sFoD A B Cθ θ θ= + +  (8b) 
 
 andA N Bi, B Bi C N= − = = −  (8c) 
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This fractional-time Bernoulli equation was not 
encountered in the literature so far, even with arbitrary 
fractional order 0 1α< <  similar to the fractional Riccati 
equation; expressed through the Caputo derivatives [16] 
or modified Riemann-Liouville (Jumarie’s) derivatives 
[17], namely: 

 

 ( ) ( ) ( ) ( ) 2
0 1 1 1 0 1C

tD y t A t B t y C t y ,α α= + + < <  (9) 

III. Solution by VIM 
In accordance with the VIM methodology, we have to 

construct a correction functional for (8b) in the form: 
 

 ( )
0

0
1 4

RL
Fo nRL

n n t
n n

D A
I

B C

α
α θ

θ θ λ τ
θ θ

+

⎡ ⎤⎛ ⎞− +
⎢ ⎥⎜ ⎟= +

⎜ ⎟⎢ ⎥− −⎝ ⎠⎣ ⎦
 (10a) 

 
where: 
 

 ( ) ( ) ( ) ( )
0

1

0

1 Fo
RL

tI Fo Fo Fo dααθ τ θ τ
α

−= −
Γ ∫  (10b) 

 
is a fractional integral in the Riemann-Liouville sense. 

The crucial step defining the successful application of 
VIM is the determination of the general Langrage 
multiplier ( )λ τ . The problems existing in its 
determination are discussed next. 

III.1. Lagrange Multiplier Determination 

The main problem emerging through the identification 
of the general Lagrange multiplier in case of fractional 
equations is the fact that with the integral Iα  in the 
correctional functional the integration by parts cannot be 
applied [3],[4]. We will discuss two approaches existing 
in the literature and providing different Lagrange 
multipliers. 
 
Approach 1:  

Following Momani and Odibat [19]-[21] and other 
articles devoted to similar problems [17], [18], [22], [23] 
the iteration formula (10a) is replaced by: 
 

   ( ) 4
1 0

0

Fo
RL

n n Fo n n nD A B C dαθ θ λ τ θ θ θ τ+ ⎡ ⎤= + − − −⎣ ⎦∫ � �  (11a) 

 
The stationary condition of the functional leads too:  

 

 ( )1
0

0
Fo

n
n n

d
d

d
θ

δθ δθ δ λ τ τ
τ+ = + =∫  (11b) 

 

Because nθ�  is a restricted variation, i.e. 0nδθ =� , the 
condition (11b) yields: ( ) 0λ τ′ =  and ( )1 0λ τ+ =  

resulting in 1λ = − . The result is the same as for the 
fractional Riccati equations [17],[18] because both the 
linear and the non-linear terms in the RHS of (11b) are 
restricted variations. Therefore, the correctional 
functional (10a) for 0 1α< < (omitting the subscript Fo ) 
should be: 
 
 

0

4
1 0

RL RL
n n t n n nI D A B Cα αθ θ θ θ θ+ ⎡ ⎤= − − − −⎣ ⎦  (11c) 

 
However, following the rules defined by (11a),(11b) 

we may write the correction functional also as: 
 

 4
1 0

0

Fo
RL

n n Fo n n nD A B C dαθ θ θ θ θ τ+ ⎡ ⎤= − − − −⎣ ⎦∫ � �  (11d) 

 
i.e. the Riemann-Liouville integral is replaced by an 

integer-order Riemann integral 
Therefore, there are two options in the successive 

iterations after determination of the Lagrange multiplier, 
namely: 
1) Approach 1 - Option 1 (A1-O1), 1Hλ = − and 

Riemann integration by  (11d) 
2) Approach 1 - Option 2 (A1-O2), 1Hλ = − and 

Riemann-Liouville  integration by (11c) 
• The subscript " H " indicate that this multiplier is 

identified by rules drawn by J.H-He (see III.3 for 
detailed comments)  

These two options will be commented and 
numerically exemplified further in this article.  

 
Approach 2: 

Avoiding the problem with the impossible integration 
by parts with the integral Iα  in (10a), we apply the 
approach of Wu [24], [25] which has two principle steps: 
a) By an initial Laplace transform to (10a) we get: 

 

 ( ) ( ) ( ) 0
1 4

0

t RL
n

n n
n n

D A
s s L t ,

B C

αθ
θ θ λ τ

θ θ
+

⎡ ⎤⎛ ⎞− +
⎢ ⎥⎜ ⎟= +

⎜ ⎟⎢ ⎥− −⎝ ⎠⎣ ⎦
∫ (12a) 

 
The Lagrange multiplier is assumed in the form 
( ) ( )t , tλ τ λ τ= −  allowing: 
 

 ( ) ( )4
0

0

t
RL

n n nL t , D A B Cαλ τ θ θ θ
⎡ ⎤

− − −⎢ ⎥
⎢ ⎥⎣ ⎦
∫  (12b) 

 
to be considered as convolution of ( )tλ  and: 
 

( )4
0

RL
n n nD A B Cαθ θ θ− − −  

 

Then, if nθ�  and 4
nθ�  are restricted variations (similar 

to Approach 1), we get: 
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( ) ( ) ( )

( )( ) ( )

1 0 0

1

RL
n n t n

n

s s L I D

s s s

α α

α

δθ δθ δ λ θ

λ δθ

+
⎡ ⎤= + =⎣ ⎦

= +
 (12c) 

 
The stationary conditions implies the coefficient of 
( )n sδθ  to be equal to zero, that results in: 

 

 ( ) 1s
sα

λ = −  (13a) 

 
b) The inverse Laplace transform of (13a) gives  the 

Wu’s multiplier [24], [25], (denoted as Wλ ): 
 

 ( ) ( )
( )

( ) ( )
( )

1 1

W
1t t

t ,
α α ατ τ

λ τ
α α

− −− − −
= − =

Γ Γ
 (13b) 

 
More detailed analyses about this approach and the 

Lagrange multiplier (13b) are available in [24], [25]. 
Thus, with the Lagrange multiplier (13b) and taking 

into account that t Fo≡ (and omitting the subscript Fo ), 
the correctional functional (10a), for 0 1α< < , is: 

 

  ( ) ( )
( )

1
1

0
4

0

1

n n

Fo RL
n

n n

D AFo
d

B C

α α α

θ θ

θτ
τ

α θ θ

+

−

= +

⎡ ⎤ ⎡ ⎤− +− −
⎢ ⎥+ × ⎢ ⎥

Γ⎢ ⎥ − −⎢ ⎥⎣ ⎦⎣ ⎦
∫

 (13c) 

III.2 Iterations 

Approach 1 (with 1Hλ = − ) 
Option 1 (A1-O1 , 1Hλ = − and Riemann integration by  
(11d). 

This is common approach well-known from the 
literature (see refs.[17]-[22]). Assuming the initial 

approximation as 
( )0 1
Foαθ

α
=
Γ +

 we get by iteration: 

 

 

( ) ( )

( ) ( ) ( ) ( )

1 1

1

1 5 1

4

1
1

1 1 1 5 1

A O FoA Fo

Fo FoB C

α

α α

θ
α

α α α α

−

+ +

= − + +
Γ +

+ +
+ Γ + + Γ +⎡ ⎤⎣ ⎦

 (14a) 

 
with 1 2α = , we get: 
 

 

( ) ( )

( ) ( )

1 1

1

1 2

3 2 7 2

4

1
3 2

2 2
3 3 2 7 3 2

A O FoA Fo

Fo FoB C

θ − = − + +
Γ

⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟Γ⎝ ⎠ ⎝ ⎠ Γ⎡ ⎤⎣ ⎦

 (14b) 

 
3) Option 2 (A1-O2), 1Hλ = −  and Riemann-Liouville  

integration by (11c), yield. 
Moreover, taking into account (see (8c)) that the 

coefficients in the Bernoulli equations are A N Bi= − , 
B Bi=  and C N= − , and with 1 2α =  we get: 
 

 

( ) ( ) ( )

( )
( )

( )

1 2
1 2

5 2

4

3 2 2

3
7 2 3 2

A O Fo FoN Bi Bi

Fo
N

θ − = − + +
Γ Γ

Γ
−

Γ Γ⎡ ⎤⎣ ⎦

 (15) 

 
The experiment just performed, was done by intuition, 

i.e. a mechanistic combination of 1Hλ = −  with the 
Riemann-Liouville integration. However, as it is 
demonstrated further in this article (see sec. V) this is a 
route equivalent to a combination of the Wu’s multiplier 
and the Riemann integration. 
 

Approach 2 (with 
( )

( )

1

W
Fo ατ

λ
α

−−
= −

Γ
) and integration 

by (13d) 

With the same initial approximation 
( )0 1
Foαθ

α
=
Γ +

 

and taking into account that t Fo≡ we get by iteration 
 

 
( ) ( )

( )
( )
( )

2

1

5

4

1 1 2

1 4
1 5 1

W Fo FoA B

FoC

α α

α

θ
α α

α
α α

= + +
Γ + Γ +

Γ +
+

Γ + Γ +⎡ ⎤⎣ ⎦

 (16a) 

 
with 1 2/α =  we have: 
 

    
( ) ( ) ( )

( )
( )

1 2 5 2

1 4

3
3 2 2 7 2 3 2

W Fo Fo FoA B Cθ
Γ

= + +
Γ Γ Γ Γ⎡ ⎤⎣ ⎦

 (16b) 

 
The these results, i.e. (14b), (15) and (16b) are 

presented graphically in a series of plots (see Figs. 1-3) 
with various values of Bi  and N  numbers. 

III.3 Comments on the Lagrange Multipliers 

The different results developed by both approaches 
need clarifications about the origin of these results. First 
of all it is clear that with the fractional integral and a 
fractional derivative in the functional the differentiation 
by parts does not hold. Browsing the literature on VIM, 
several principle approximations have been done, among 
them: 

The first approximation in the identification of the 
general (example 2 in ref.[26]) provoked a simplification 
by introducing restricted variations of high-order terms 
in the correction functional. This step, which, in fact, 
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simplified the integration by parts, yields an approximate 
Lagrange multiplier. Now, this is a common step in all 
studies on VIM, but commonly the authors forget the 
reasons for this approach. 

The second approximation in application of VIM was 
done when fractional differential equations were at issue 
(see in detail part 5 in ref. [27]). Since the integration by 
parts does not hold with the Riemann-Liouville integral 
and the fractional derivative in the functional, He did two 
simplifications more a) Replaced the Riemann-Liouville 
integral by an integer Riemann Integral; b) The fractional 
derivative was replaced by an integer one of order m  
(minimal ( )m ceil α α= >  or maximal integer 

( )m floor α α= < ). In the case of 0 1α< < , and 

particularly with 1 2α =  we have ( ) 1m floor α= = . 
Combining Approx. 1 and Approx. 2, and the ideas of 

He [26], [27] the steps expressed by Eqs (11a), (11b) 
seems correct even though these are approximations 
avoiding principle obstacles in determination of the 
Lagrange multiplier. However, the consequent 
application of an integer (Riemann) integral in the 
development of the successive iteration (see again 
Chapter 5 in Ref. [2]) does not mean reasonable from a 
mathematical point of view. 

Nevertheless, from practical reasons, there is strong 
motivation this to be done. Simply, the increase in the 
order of iterations makes the calculations cumbersome 
which are hard to be handled manually, but easily carried 
out by Maple or Mathematica, where fractional integrals 
are not developed. Frequently, in the recent literature, 
this approach is referred to the works of Momani and 
collaborators [19]-[21] since they are easily accessible, 
but, in fact, the origin is the works of He [26], [27].  

The Wu’s approach attacks the problem correctly, 
since it strictly follows the VIM’s rules without any 
approximation in the type of the integral in the correction 
functional. The only trace remaining from the He’s 
suggestions is the Approximation 1, with restricted 
variations of high order terms. 

IV. Numerical Simulations                           
and Comments 

Before performing cumbersome iterations resulting 
from the non-linear radiation term in the boundary 
condition, let us see what is the effect of Bi  and N  
dimensionless numbers on the behaviour of the first 
iteration performed with the two distinct Lagrange 
multipliers and the suggested option in the integration in 
the correction functional. Initially, we start with 1Bi =  
and 1N = , following the work of Davies [11] and 
Crosbie and Viskanta [28]. The plots in Fig. 1(a) indicate 
that the first iteration with 1Hλ = − goes far away from 
the initial approximation, while with Wλ  and 

( )1 2H A Oλ −  the lines are practically indistinguishable. 

 
Figs. 1. Effect of the Lagrange multiplier on the first iteration  in 

various case of convective heating and radiative cooling  
 

The same behaviour is observed with 0.5N = (see 
Fig. 1(b)), as well as when 0.1Bi =  and 0.1N = (Fig. 
1(c)). The case with extreme values of 10Bi =  and 
( )10N =  does give adequate information which of the 
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first iterations is better (Fig. 1(d)).  
In case of only heating ( 0N = ) (see Figs. 2(a), (b)); it 

is possible to distinguish the behaviour of the lines, but 
in all these the first iterations with ( )1 2H A Oλ −  and the 
Wu’s, multiplier and consequent Riemann-Liouville 
integration practically merge (indistinguishable).  
 

 
Figs. 2. Effect of the Lagrange multiplier on the first iteration  in 

various case of convective heating only 

 
The cases with small Bi  numbers are small and the 

radiative cooling is dominating (see Fig. 3(a)) 
demonstrate distinguishable behaviour of the first 
iterations. 

In the other cases (Figs. 3(b), (c)) it is hard only on 
the basis of the first iteration to get right information 
which approximation is better, even though theoretically 
that of Wu with Wλ  is the correct one. 

These are only first attempts to find what should be 
done further. 

The large varieties of values of the dimesionless 
numbers Bi  and N  do not allow to estimate, at this 
moment, the best performance of the approximation with 
either Hλ or Wλ . However, this can be simply estimated 
in a particular case strongly related to a practical 
problem. 

A special attempt in this work was done by non-
dimensalization of the governing equations and using the 
Fourier number Fo  as independent variable. This was 
done, because, it is well-know that convergence of VIM 
is better at small times, i.e. at small values of Fo  in the 
present case. 

Physically, small Fo , means either small times for 
materials with small thermal diffusivity time scale 
( 2b a ), or large times with large 2b a . In any case, the 
use of Fo as independent variable allows VIM to be 
applied. 
 

 
Figs. 3. Effect of the Lagrange multiplier on the first iteration  in 

various case of radiative cooling only 
 

The problems with successive approximation of high 
order and their convergences when both Lagrange 
multipliers are applied is open and its solution is a 
challenge, but beyond the scope of the present work. The 
better way, to elucidate this crucial for the VIM’s 
applications problem is to solve well-known examples 
available in the literature; this draws ideas for future 
studies. 
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V. Some Comments on the Options in the 
Integration and the Emerging Results 

The previous point demonstrated what the numerical 
behaviour of the first iteration is when some 
combinations (option in iterations) between the Lagrange 
multiplier and the type of the integral were performed. 

First of all, starting with the dominating approach 
used by Momani et al. ([19]-[21]), we have: 
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∫
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For the equation: 
 

 [ ] [ ] ( )0
C

n n nD u R u N u fα
τ τ+ + =� �  (17b) 

 
Here we use the common notations available in the 

literature. 
With the Lagrange multiplier 1Hλ = − commonly 

used in the literature (Momani [19]-[21]), we get results 
already demonstrated by integration with the Riemann 
integral, namely: 
 

 [ ] [ ] ( )1 0
0
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C
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However, with the Wu’s multiplier: 
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which, in fact, is the kernel of the integration by the 
Riemann-Liouville integral , we get the Wu’s iteration 
formula, namely: 
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Therefore, the Wu’s approach is equivalent to RL 

integration with 1Hλ = − , as it was suggested 
mechanistically in this article, but from practical point of 
view it is more convenient since the Riemann integration 
can be easily performed by Maple or Mathematica. 

We expect these brief explanations will elucidate the 
behaviour of the first iterations demonstrated graphically 
in the previous point and while, in fact some of them 
were indistinguishable; in fact different combinations led 
to one and the same results. 

Moreover, we may expect that the correct approach in 
the VIM integration and the Lagrange multiplier 
determination proposed by Wu would be briefly 
accepted and successful solutions of problems will be 
published soon. 

VI. Conclusion 
The present work formulated a time-fractional 

Bernoulli equation as a consequent splitting the heat-
conduction model into a subdiffusion one (half-time) 
with derivatives in the Riemann-Liouville sense and 
application of a non-linear boundary flux condition 
involving both convective heating and radiative cooling. 

The approach is general and can be applied to other 
combinations of the heat fluxes acting at the solid-fluid 
interface. 

More interesting problem emerging in this work is the 
correct performance of the successive iterations by the 
proper identification of the general Lagrange multiplier. 
The steps done in the analysis of the problem stop at the 
first iterations only, because before cumbersome 
calculations it is useful to elucidate which approach is 
promising. The numerical simulations illustrated by the 
plots indicate better performance of the Wu’s multiplier. 
This is first estimation, but more information could be 
taken from solutions of problems having exact closed-
form or numerical solutions. 

The problem formulated in this work allows the 
surface temperature evolution of bodies to be calculated 
in a simpler way avoiding cumbersome solution of the 
temperature field in the depth of the medium. This would 
be really a straightforward approach,  but some essential 
steps in the application of VIM , especially the correct 
Lagrange multiplier identification and consequent 
application of integration in the Riemann-Liouville since 
(as it was done in this work) should be further 
thoroughly analyzed for particular problems. 
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