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Stokes Flows of a Newtonian Fluid 
with Fractional Derivatives and Slip at the Wall 

 
 

I. Siddique1, D. Vieru2 
 
 
Abstract – Stokes flows of a Newtonian fluid with fractional derivatives produced by the motion 
of a flat plate are analyzed under the slip condition at boundary. The plate motion is assumed to 
have a translation in its plane with a given velocity and the relative velocity between the velocity 
of the fluid at the wall and the speed of the wall is assumed to be proportional to the shear rate at 
the wall. The exact expressions for the velocity and the shear stress are determined by means of 
the Laplace transform. The velocity fields corresponding to both cases with slip and non-slip 
conditions, for fractional Newtonian and Newtonian fluids are obtained. The particular case, 
namely sine oscillations of the wall is studied. Results for fractional Newtonian fluids are 
compared with those of viscous Newtonian fluids in both cases of the flow with slip and non-slip 
conditions. In addition the influence of the slip coefficient on the relative velocity is studied. 
Copyright © 2011 Praise Worthy Prize S.r.l. - All rights reserved. 
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I. Introduction 
The assumption that a liquid adheres to a solid 

boundary so called “non-slip” boundary condition-is one 
of the principal rules of the Navier Stokes theory. More 
experiments are in favor of the non-slip boundary 
condition for a large class of flows. An interesting 
discussion regarding to acceptance of the non-slip 
condition can be found in [1]. 

Even if this assumption has proved to be successful 
for a great variety of flows, it has been found to be 
inadequate in several situations such as: the mechanics of 
thin fluids, problems involving multiple interfaces, flows 
in micro-channels or in wavy tubes, or flows of 
polymeric liquids with high molecular weight. Navier [2] 
proposed a slip boundary condition which states that the 
velocity of the fluid at the wall is linearly proportional to 
the shear stress at the wall. 

For describing the slip that occurs at solid boundaries, 
a large number of models have been proposed. Many of 
them can be found in [3]. 

Generally, the slip is assumed to depend on the shear 
stress at the wall. However, more experiments suggest 
that the slip velocity also depends on the normal stress 
[3]. 

The flow of Newtonian or non-Newtonian fluids 
induced by a motion of a plate is called as stokes 
problem if the fluid is bounded only by the moving plate 
and Couette flow, if the fluid is bounded by two parallel 
plates. Solutions for some Stokes flows due to a moving 
plate that satisfy non slip conditions can be found in 
references [4]-[7]. One of the early studies of the slip at 
the boundary was undertaken by Mooney [8]. 

Some non-Newtonian fluids such as polymer melts, 
often exhibit macroscopic wall slip, which generally 
described by a nonlinear relation between the wall slip 
velocity and the fraction at the wall [9]. 

Recently, the fractional calculus has encountered 
much success in the disruption of complex dynamics. In 
particular, it has been proved to be a valuable tool for 
handling viscoelastic properties [10], [11]. Some 
interesting results regarding to the flows of Newtonian or 
non-Newtonian fluids with fractional derivatives can be 
found in [12]-[14]. 

In this paper, Stokes flows of a Newtonian fluid with 
fractional derivatives, produced by the motion of a flat 
plate are analyzed under the slip boundary conditions 
assumption between the wall and the fluid. The motion 
of the wall is a rectilinear translation in its plane with the 
velocity ( ) ( )wu t f t= . Exact expressions for the 
velocity and shear stress are determined by means of the 
Laplace transform. Expressions for the relative velocity 
are also determined and the solutions corresponding to 
flows with non-slip at the boundary are presented. The 
particular case, namely sine oscillations of the wall is 
studied. Some relevant properties of the velocity and 
comparisons between solutions with slip and non-slip at 
the boundary are presented by using graphical 
illustrations generated by the software MathCAD. 

II. Problem Formulation and Solution 
Consider a plane wall situated in the xz -plane of a 

Cartesian coordinate system with the positive y -axis in 
the upward direction. Let an incompressible, 
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homogeneous Newtonian fluid with fractional 
derivatives fill the region 0y ≥ . Initially, both the fluid 

and plate are at rest, At time 0t +=  the fluid is set in 
motion by the plate which begins to translate along the 
x -axis with the velocity  ( ) ( )wu t f t= , where ( )f t  is a 

piecewise continuous function defined on  ( ]0, ∞  with 

( )0 0f = . Also, we suppose that the Laplace transform 
of the function f  exists. In the case of a parallel flow 
along the x -axis, the velocity vector is 

( )( )0 0u y, t , ,V =  while the constitutive relation and 

the governing equations are given by [12], [15]: 
 

 ( ) ( )
0

u y,t
y,t , y, t

y
τ µ

∂
= >

∂
 (1) 

 

 ( ) ( )2

1 2 0c
t

u y,t
D u y,t , y, t

y
α ν

∂
= >

∂
 (2) 

 
where ( ) ( )xyy, t S y, tτ =  is one of the non-zero 
components of the extra-stress tensor, µ  is the dynamic 

viscosity, 2
1 1 0m / s ,αν ν⎡ ⎤ >⎣ ⎦ , is the material coefficient 

and c
tD α  is the Caputo fractional derivative operator 

defined by [10], [11]: 
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Γ  being the Gamma function. 

For 1α = ,  ( ) ( )1c
t

df y,t
D f t

dt
= , 1 /ν ν µ ρ= =  is the 

kinematic velocity,  ρ  being the density  of the fluid and 
Eq. (2) governs the flow of Newtonian fluids. In this 
paper we consider the existence of slip at the wall and 
assume that the relative velocity between ( )0u , t - the 
velocity of the fluid at the wall and the speed of the wall 
is proportional to the shear rate at the wall [16]. The 
boundary and initial conditions are: 

 

 ( ) ( ) ( )
0

0 w
u ,t

u ,t u t
y

β
∂

− =
∂

 (4) 

 
 ( ) 0u y,t as y→ →∞  (5) 
 
 ( )0 0u y, =  (6) 
 
where β  is the slip coefficient. The Laplace transform 
method is used to solve Eq. (2) with initial-boundary 
conditions (4)-(6) 

II.1. Velocity field 

By applying the temporal Laplace transform [12] to 
Eqs. (2), (4), (5) and using the initial condition (6) we 
obtain the following problem: 
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where ( )u y, q  and ( )F q  are the Laplace transforms of 

functions ( )u y, t  and ( )f t  respectively. 
The solution of the differential equation (7) with 

conditions (8) and (9) is given by: 
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Taking the inverse Laplace transform [17], [18] in Eq. 

(10), using (A-1) and (A-2) from the Appendix and the 
convolution theorem we obtain the following exact 
expression for the velocity corresponding to the flow of a 
fractional Newtonian fluid with slip at the boundary:  
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where ( ),Eα β ⋅  is the Mittag-Leffler function [18] and 

( )pJ ⋅  denotes the Bessel function of the first kind of 
order p . For the flow of a fractional Newtonian fluid 
with non-slip boundary condition, that is 

0 0 1,β α= < < , Eq. (10) becomes: 
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and the ( )y, t -domain solution is given by: 
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The velocity field corresponding to the flow of a 

Newtonian fluid with slip at the boundary, that is for 
1 0,α β= ≠  is given by: 
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while the velocity corresponding to the flow of a 
Newtonian fluid with non-slip condition, that is 

1 0,α β= =  is: 
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The relative velocity between the velocity of the fluid 

at the wall and the wall itself for a fractional Newtonian 
fluid is given by: 
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and, for a Newtonian fluid is: 
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II.2. Shear Stress 

The shear stress, determined by using Eqs. (1), (12)-
(14) is given by: 

 
a) The Newtonian fluids with fractional derivatives 

and slip at the wall 
 

( )
( ) ( )

( )
( )

( )( )

11

1

1

1
2

1
20 0 0

0

2
1

1
2

1

2

n

n

nt s

,

yn

y, t
y n

n !

f t s

E z dzd ds

J s z

α

α
α

α α

νν µτ
αβ α

σ

ν σ σ
β

σ

∞

=

−

+∞

⎛ ⎞
−⎜ ⎟⎜ ⎟
⎝ ⎠= ×

+⎛ ⎞
+ Γ⎜ ⎟

⎝ ⎠
⎡ ⎤− ⋅⎢ ⎥
⎢ ⎥

⎛ ⎞⎢ ⎥× ⋅ − ⋅⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥
⎢ ⎥⋅ −⎢ ⎥⎣ ⎦

∑

∫ ∫ ∫

 (18) 

 
b) Newtonian fluid with fractional derivatives and 

non-slip at the wall 
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c) Newtonian fluid with slip at the boundary 
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d) Newtonian fluid with non-slip condition 
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III. Flows Due to Sine Oscillations             
of the Wall 

The velocity fields corresponding to this type of 
motion are given by Eqs. (11)-(14) in which function  
( )f t s−  is replaced by ( )0V sin t sω − , ω  being the 

frequency of oscillations. By using the graphical 
illustrations, generated with the software MathCAD, we 
discuss some relevant physical aspects of the flow. In 
these figures we use ( )0 0 5 m/sV .= , 

( ) ( )1 2 α
1 0 1655 0 2 m /s. . αν −= , 0 1α< ≤ , 

20 1655 m /s.ν = , 6/ω π=  and the following 
abbreviations: 
I. sNF -fractional Newtonian fluid with slip at the 

boundary, 
II. NF -fractional Newtonian fluid with non-slip 

condition at the boundary, 
III. sN -Newtonian fluid with slip at the boundary, N -

Newtonian fluid with non-slip at the boundary,  
In Fig. 1 we plotted the velocity  ( )u y, t  verses t  for 

{ }0 1 0 2 0 3y . , . , .∈ . For comparison, we have plotted 
these functions corresponding to fractional Newtonian 
and Newtonian fluids with slip boundary and with non-
slip boundary conditions. It is clear that the absolute 
values of the velocity decrease if  y  or t  increases. For 
both, fractional Newtonian and Newtonian fluids the 
velocity is larger in the case of non-slip condition than in 
the case of slip at the boundary. The fractional 
Newtonian fluid is slower than the Newtonian fluid. 

In Fig. 2 we drew diagrams of velocity ( )u y, t  verses 
t , for three different values of the fractional coefficients 
α . The curves correspond to fractional Newtonian fluids 

with slip at the wall. For comparison the curves 
corresponding to the Newtonian fluid with slip at the 
wall is also plotted.  

From these figures, it clearly results that the velocity 
( )u y, t , in absolute terms, increases for increasing α . 

For 1α →  the diagrams of velocity tend to the diagram 
corresponding to a Newtonian fluid with slip at the 
boundary. 

In Fig. 3 we have plotted the relative velocity verses t  
for three different values of the slip coefficient β , for 
both fractional Newtonian and Newtonian fluids. The 
relative velocity in absolute terms, is an increasing 
function of β .  

 

 

 

 
 

Fig. 1. Velocity u(y, t) versus t for V0=0.5, α = 0.7, β = 0.5, ν =0.1655, 

( )10 1655 0 21 . . αν −= ⋅ , ω = π/6 and different values of y 

 

 
 

Fig. 2. velocity u(y, t) verses t for V0=0.5, β = 0.5, ν =0.1655, 

( )10 1655 0 21 . . αν −= ⋅ , ω = π/6  and different values of α 
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Fig. 3. Relative velocity u(t) for V0=0.5, ν  = 0.1655, 

( )11 0 1655 0 2. . αν −= ⋅ , ω = π/6 and different values of β 

IV. Conclusion 
Stokes flows of a fractional Newtonian fluid were 

analyzed under the slip condition between the fluid and 
the wall. The motion of the wall was assumed to be a 
rectilinear translation in its plane. A particular case, 
namely sine oscillations was considered. The relative 
velocity between the velocity of the fluid at the wall and 
the wall was assumed to be proportional to the shear rate 
at the wall. The exact expressions for the velocity 
( )u y, t  and shear stress ( )y, tτ  have been determined 

by means of the Laplace transform. For a complete study 
and possible comparisons, we present velocity fields 
corresponding to both flows with slip and non-slip 
conditions for fractional Newtonian and Newtonian 
fluids. The expressions for the relative velocity have also 
been determined. For sine oscillations of the plate, the 
velocity corresponding to flows with slip condition is 
smaller than that for flows with non-slip conditions and 
fractional Newtonian fluids are slower than Newtonian 
fluids (See Fig. 1). The velocity in absolute terms 
increases for increasing fractional coefficient α , (Fig. 
2); the relative velocity in absolute terms is an increasing 
function of the slip coefficient β . The software 
MathCAD 14.0 was used for numerical calculations and 
to generate the diagrams presented in this paper.  

Appendix 
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