
Speeding up and automating
your development routine
with Docker

Andrey Hristov
CTO, DNH Soft

$ whoami

MSc in Computer Tecnologies (TU-Sofia) and Software Engineering (HFT Stuttgart)

Professional developer since year 2000

PHP core developer since 2002

Spent 11 years working at MySQL, SUN and Oracle improving the MySQL client and
server side

During the past 2 years spent as a technical team leader and lately moved to a
CTO position at DNH Soft

What to expect from this talk?

Linux POV

Description of technologies related to containers

Overview of Docker

L1v3 D3m0

To begin with, what is Docker?

Docker Inc. is a company, previously dotCloud

However in the past 5 years the name meant containers

Some people say dockerize when they mean containerize

Containers were not invented by Docker Inc. The company made them available to
the masses.

Then, what is a container?

Containerization is OS environment virtualization

It feels like a VM but ain't one. Some people call them lightweight VMs.

“One kernel to rule them all” compared to “one hypervisor to rule them all”.

Can't boot a different OS or kernel. Can't load other modules.

Can boot different distro, however.

Examples of previous/other works : Solaris Zones, FreeBSD Jails

Diving in deep : Linux Namespaces

Linux Namespaces = isolation

Cgroup - Cgroup root directory

IPC - System V IPC, POSIX message
queues

Network - Network devices, stacks,
ports, etc.

Mount - Mount points

PID - Process IDs

User - User and group IDs

UTS - Hostname and NIS domain
names

Diving in deeper: Cgroups

“Control groups, usually referred to as cgroups, are a Linux kernel feature which
allow processes to be organized into hierarchical groups whose usage of various
types of resources can then be limited and monitored.”

A cgroup is a collection of processes that are bound to a set of limits or
parameters defined via the cgroup filesystem

Cgroups are found under /sys/fs/cgroup

Cgroups have their own namespaces

Cgroups offer resource metering and limiting of memory, CPU, block I/O, network

Who is running them?

Containers are managed by runtimes

LXC/LXD - LXD, written in Go, uses LXC

rkt - App Container compliant, deprecated, by
CoreOS, now Red Hat. Natively ACI, but supports
also Docker and OCI images.

runC - OCI compliant implementation in Golang
by Docker Inc., a spin off from Docker Engine
since Docker 1.11

containerD - works with runC for the high level
details, while runC is low level

railcar - OCI compliant implementation in Rust by
Oracle

OCI has two specs, released in July'17 : Image
and Runtime

CRI-O, implementation of the Kubernetes (1.5+)
Container Runtime Interface (CRI) using OCI
compatible runtimes.

But there is more!

Container are managed at higher level by orchestrators.

Docker Compose (single host only, part of Docker Engine)

Docker Swarm (part of Docker Engine)

Marathon on Apache Mesos

Cattle, obsoleted, by Rancher. Rancher 2.0 runs k8s

Kubernetes (k8s). Recently won the Orchestrator wars.

Docker, where is my data?

aufs (/var/lib/docker/aufs), superseed by

overlayfs, shipped with Linux Kernel 4.0

cat /proc/filesystems to see what you have

In short, what’s in for me?

Containers are lightweight, or at least lighter than
VMs, both in run-time resources usage and size

Containers are immutable

Containers can be even read-only

Every container contains all needed
dependencies and doesn't need anything else

Implications:

Dep hell is gone. DLL hell memories resurface?

XAMPP is dead

Linux distro software choice is dead

Less software installed means less exploit
surface

Container images hosting

Docker Inc. runs Docker Hub

Library of public images

Supports automated builds triggered on a
commit in Github / BitBucket.

Storage for your images

● free of charge for you public ones
● has a cost for you private images

Alternatives are:

● Host a repo in a container on own VPS
● Amazon Elastic Container Registry, you

need AWS SDK
● Google Container Registry, you need

Google Cloud SDK

Docker Flavors

Supported OS for Docker CE:

● Linux (x86-64, ARM, ARM64, ppc64le,
s390x(

● MacOS, comes bundled with k8s
● Windows, comes bundled with k8s
● AWS
● Azure

Supported Platforms for Docker EE

● CentOS (x86-64)
● OL (x86-64)
● RHEL, SUSE Linux ES, Ubuntu (x86-64 /

ppc64le / s390x)
● MS Windows Server 2016 (x86-64)
● AWS
● Azure
● IBM Cloud

Docker Compose

Originally known as Fig

“Cluster” configuration is stored in an YAML file

The file is by default ./docker-compose.yml

Features are constantly added, thus there are many compose file versions. Latest
is 3.6 as of 18.02.

First line in the file states minimum version

The file is split in 3 main sections, since 2.0 : services, networks, volumes

Docker Compose Entities

services - The containers = instances of images.

With Swarm you can have multiple instance
per service - scaling up and down.

volumes / mounts - Persistently stored data.

Otherwise data is gone when the container
get removed.

Mounts import data from the host and are
shareable

Volumes are BLOBs and are shareable too

Volumes are abstracted thru plugins

networks - The actual glue between the services

DC creates a default network, if are lazy to
not create one.

This network is called <projectName>_default

<projectName> is derived from CWD, pass -p
to docker-compose for smth else.

Networks can be seen by other projects and
they are namespaced by project name.

Network frontend in P1 can be attached in
project P2 as external network under the
foreign name P1_frontend.

Docker CLI

docker pull image[:tag|@digest], aka docker
image pull

● tag can is a version, digest is a sha256
digest (like git commit hash)

docker push image:tag, aka docker image push

docker rmi image:tag, aka docker image rm

docker build, aka docker image build

● use --no-cache to rebuild from scratch
● use -t image:tag to add name and version

docker images, aka docker image ls

docker image inspect

docker image inspect <imageid> | jq -r '.[].RootFS'

More Docker CLI

docker run, aka docker container run

docker exec, aka docker container exec

docker rm, aka docker container rm

docker ps, aka docker container ls

docker stop, aka docker container stop (SIGTERM)

docker kill, aka docker container kill (SIGKILL)

docker kill `docker ps -q` to kill'em all

docker inspect

● inspects networks, containers, images
● gives you tons of info in JSON format. Use

jq to process it.

docker network ls

docker network rm

docker network prune

docker system prune

Live
Demo

Q&A / Resources

Anatomy of a container: https://bit.ly/2v0EEGj

https://github.com/andreyhristov/bws2018-docker

https://coreos.com/rkt/docs/latest/rkt-vs-other-projects.html

https://docs.docker.com/install/linux/docker-ce/ubuntu/

https://docs.docker.com/compose/install/

https://docs.docker.com/compose/compose-file/

https://docker-software-inc.scoop.it/t/docker-by-docker

https://dashtainer.com/

https://landscape.cncf.io/

https://traefik.io/

https://leanpub.com/the-devops-2-toolkit

https://leanpub.com/the-devops-2-2-toolkit

https://leanpub.com/the-devops-2-3-toolkit

https://thenewstack.io/

https://bit.ly/2v0EEGj
https://github.com/andreyhristov/bws2018-docker
https://coreos.com/rkt/docs/latest/rkt-vs-other-projects.html
https://docs.docker.com/install/linux/docker-ce/ubuntu/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/compose-file/
https://docker-software-inc.scoop.it/t/docker-by-docker
https://dashtainer.com/
https://landscape.cncf.io/
https://traefik.io/
https://leanpub.com/the-devops-2-toolkit
https://leanpub.com/the-devops-2-2-toolkit
https://leanpub.com/the-devops-2-3-toolkit
https://thenewstack.io/

